Neighborliness of Marginal Polytopes
نویسندگان
چکیده
A neighborliness property of marginal polytopes of hierarchical models, depending on the cardinality of the smallest non-face of the underlying simplicial complex, is shown. The case of binary variables is studied explicitly, then the general case is reduced to the binary case. A Markov basis for binary hierarchical models whose simplicial complexes is the complement of an interval is given.
منابع مشابه
High-Dimensional Centrally Symmetric Polytopes with Neighborliness Proportional to Dimension
Let A be a d by n matrix, d < n. Let C be the regular cross polytope (octahedron) in R. It has recently been shown that properties of the centrosymmetric polytope P = AC are of interest for finding sparse solutions to the underdetermined system of equations y = Ax; [9]. In particular, it is valuable to know that P is centrally k-neighborly. We study the face numbers of randomly-projected cross-...
متن کاملConstructing neighborly polytopes and oriented matroids
A d-polytope P is neighborly if every subset of b d 2 c vertices is a face of P . In 1982, Shemer introduced a sewing construction that allows to add a vertex to a neighborly polytope in such a way as to obtain a new neighborly polytope. With this, he constructed superexponentially many different neighborly polytopes. The concept of neighborliness extends naturally to oriented matroids. Duals o...
متن کاملHierarchical Models, Marginal Polytopes, and Linear Codes
In this paper, we explore a connection between binary hierarchical models, their marginal polytopes and codeword polytopes, the convex hulls of linear codes. The class of linear codes that are realizable by hierarchical models is determined. We classify all full dimensional polytopes with the property that their vertices form a linear code and give an algorithm that determines them.
متن کاملSparse nonnegative solution of underdetermined linear equations by linear programming.
Consider an underdetermined system of linear equations y = Ax with known y and d x n matrix A. We seek the nonnegative x with the fewest nonzeros satisfying y = Ax. In general, this problem is NP-hard. However, for many matrices A there is a threshold phenomenon: if the sparsest solution is sufficiently sparse, it can be found by linear programming. We explain this by the theory of convex polyt...
متن کاملar X iv : 0 80 5 . 13 01 v 1 [ m at h . ST ] 9 M ay 2 00 8 Hierarchical Models , Marginal Polytopes , and Linear Codes
In this paper, we explore a connection between binary hierarchical models, convex geometry, and coding theory. Using the so called moment map, each hierarchical model is mapped to a convex polytope, the marginal polytope. We realize the marginal polytopes as 0/1-polytopes and show that their vertices form a linear code. We determine a class of linear codes that is realizable by hierarchical mod...
متن کامل